

Der sunliquid® Prozess:

Energieeffiziente und ressourcenschonende Entwicklung und Herstellung biobasierter Kraftstoffe – Gezielter Einsatz von Enzymen und Mikroorganismen zur Unterstützung der Biokraftstoffproduktion

Confidential

Dr. Markus Rarbach Biofuels & Derivatives Group Biotechnology 19.01.2016

what is precious to you?

Clariant - A World Leader in Specialty Chemicals

Creating additional value through Sustainability – business benefits and Clariant's approach

SUSTAINABILITY AT CLARIANT

- Essential to achieve company targets
- Positioning in sustainability market
- Differentiate from competitors
- Support profitable growth
- Create added value for customers

External recognition of sustainability performance

Global voluntary initiatives and programs

Sustainability in the Supply Chain

Clariant's Group Biotechnology

Munich

- Since 2006
- 110 employees
- Main R&D center
- Lab and office space: 6,500 m²
- Pilot plant since 2009
- Over 15 different feedstock tested on pilot-scale

Straubing

- Since 2011
- 22 employees
- Pre-commercial sunliquid plant
- Area: 2,500 m²
- Wheat Straw, Corn Stover, and Sugarcane Bagasse converted to Ethanol

Mobility Worldwide: Situation & Challenges

- Transport covers 96% of its energy requirement with petroleum products
- Transport's share of the entire petroleum demand is 60%
- Mobility sector responsible for 23% of global CO₂ emissions (73% of that allotted to road transport)
- Prediction: in 2030 more than 2 billion automobiles worldwide
- CO₂ emissions expected to rise by 40% by 2030 due to global transport
- Finite resources of petroleum

GROWTH OF WORLDWIDE AUTOMOTIVE PRODUCTION CHANGES BETWEEN 2013 AND THE FORECAST FOR 2020

Source: Handelsblatt: Chefs nehmen die Politik in die Pflicht (29.10.2013), available online at https://archiv.handelsblatt.com

Energy needs and developments

WORLD LIQUID FUEL CONSUMPTION 2008 AND 2035

Source: http://www.eia.gov/forecasts/ieo/liquid_fuels.cfm

Savings of Greenhouse Gas Emissions in the Production of Different Biofuels

compared with gasoline

Source: Michael Wang, May Wu, Hong Huo (Center of Transportation Research – Argonne National Laboratory): Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types (22.05.2007), in Environmental Research Letters, Volume 2, Nr. 024001, p. 12, available online at http://iopscience.iop.org and Markus Rarbach (Clariant): Zellulose-Ethanol aus Agrarreststoffen – Biokraftstoff der 2. Generation für eine nachhaltige Mobilität (02.12.2011), p. 28

Market Potential for Cellulosic Ethanol

With its Focus on Integration, sunliquid[®] is Designed to Achieve Optimal Efficiency

INTEGRATED ENZYME PRODUCTION

Biomass pre-treatment

- Chemical-free & low-cost pretreatment
- Conditions optimized jointly with enzyme production

Enzymatic hydrolysis

- High sugar yields through feedstock and process-specific cellulase enzymes
- Integrated on-site enzyme production with biomass as nutrient source

Ethanol Fermentation

- High ethanol yields with proprietary high-end yeast technology
- Simultaneous one-pot C5&C6 fermentation

Energy integration

- Side products (e.g. Lignin) as energy sources
- Integration with site-specific energy infrastructure

Standard equipment

- Low scale-up risk due to established equipment
- Standard protocols for plant and equipment operations

Integrated enzyme production makes cellulosic ethanol economically viable and competitive

Enzyme cost comparison

Enzyme costs of total production costs

Integrated enzyme production

- Pre-treated biomass as source
- No enzyme formulation & stabilization
- No transportation

- Enzyme costs only 10% of total production cost
- Enzyme production costs 50% less than
 On-Site; 75% less than Off-Site
- Ensures availability and cost efficiency

sunliquid® Benefits in a Nutshell - High Performance Technology Package

REDUCED CO₂-EMISSIONS Reduction by 95%

INCREASED BIOETHANOL YIELD Conversion of all types of sugar is possible

ENERGY SELF-SUFFICIENTAll energy comes from the combustion of waste flows such as lignin

PROCESS-INTEGRATED ENZYME PRODUCTION Reduces costs

USE OF LOCAL RESOURCES
Location-specific factors can be taken
into consideration

GREEN JOBSStrengthening of local agricultural business

sunliquid® - En Route to Commercialization

2009

- Pilot plant operational
- Capacity 1 t/a Ethanol

2013

- Validation with corn stover and sugarcane bagasse in demo plant
- ISCC certification

2014

Process Design Package for commercial-scale plant

2015

■ Top-3 GreenTec award

Commercialization

2006

- Start of the development (as Süd-Chemie)
- Setup of Biotech R&D Center in Munich

2012

- Pre-commercial plant operational
- Capacity 1,000 t/a Ethanol
- Validation on wheat straw

Awarded of EU FP7 grant

2014

• E20 fuel testing with Mercedes Benz & Haltermann

2014

2015

Nominated for **German Innovation Award for Climate** and Environment (IKU)

Application of sunliquid® - Successfully Tested in Fleet

- sunliquid®20: Gasoline-Ethanol blend containing 20% cellulosic ethanol from Clariant's pre-commercial plant
- In 2014 sunliquid®20 was tested in Mercedes' fleet:
 - Particle emissions reduced by 50%
 - Today's vehicles can already use E20 blends
 - High-quality fuel for best efficiency and specification

Testing not Enough: Advanced Biofuels Need Stable & Long-Term Policy Framework along the Value Chain

Agricultural residues

Biomass Conversion

Product off-takers

End use

- Provide incentives for farmers to invest into collection of biomass via BCAP-like mechanism (USDA)
- Support project development and financing

- EU-wide binding target for advanced biofuels beyond 2020
- Binding penalties for non-compliance → EUR/I
- Roll-out E10 and introduce higher Ethanol blends E20
- Create public awareness on cellulosic ethanol

What Germany can do now

- With switch from Biofuels Quota to GHG-Emission-Saving-Quota de facto no support for advanced biofuels (tax exemption and double-counting for advanced biofuels has expired)
- Germany should transpose the new ILUC directive quickly and thereby establish:
 - A binding target of 0.5% for advanced biofuels in 2020 and beyond
 - Punish non-compliance with penalties

CLARIANT

Confidential

Dr. Markus Rarbach Biofuels & Derivatives Group Biotechnology 19.01.2016

what is precious to you?